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1 Introduction
This paper serves as a survey of techniques used to prove program termination. Although deter-
mining if a general program will terminate on all inputs is undecidable as per the halting problem,
methods for proving termination of specific programs have a long history, dating back to work by
Turing in 1949. [12]

More recently, two general methods of proving program termination have emerged. Size-change
analysis, proposed by Lee et al. [11] provides a general technique for using local changes in program
values to create and analyze a set of graphs which can be used to prove program termination.
Another technique, developed by Podelski and Rybalchenko [14], attempts to identify a transition
invariant using existing methods for theorem provers and safety checkers.

Although much of the work of the past two decades has focused on these techniques in isolation,
the theoretical underpinnings of the two approaches have much in common. Both rely on identifying
a path through the program for which some value decreases according to a well-founded relation.
Furthermore, many techniques for identifying transition invariants mirror the properties of size-
change graphs of size-change graphs.

This paper will begin by describing the general approaches of these two methods in isolation,
as well as methods for applying them in practice. It will then compare the two approaches and
identify which areas each are used in, as well as what areas of overlap exist between the two.
Finally, there will be a discussion of ways in which these techniques may be extended, how they
have been extended already, and what open problems still exist.

All major approaches for showing program termination involve identifying some value in the
program which, overall, strictly decreases according to some well-founded relation. For the purposes
of this paper, we will assume the existence of a well-founded ordering < on all program values
in the space A × A such that any non-empty subset S of A has a minimal element. That is,
∃m ∈ S . ∀x ∈ S . ¬(m < x).

If a value v ∈ A strictly decreases across the course of program execution, then an infinitely
executing program will cause this value to decrease infinitely. However, because of the existence of
a well-founded relation on A × A, we know that v cannot decrease infinitely. Therefore, different
methods for proving program termination ultimately provide different formalizations for what it
means for a value to be "strictly decreasing" across the course of program execution.

In reality, the existence of a well-founded relation for program values are usually provided as a
size ordering [16] or generated via term rewriting systems [7]. As this concern is tangential to the
methods presented in this survey, we will assume all program values have a natural well-founded
relation defined (for example, natural numbers and linked lists).

2 Size-Change Termination

2.1 Methodology
A natural approach for showing that values in a functional program are decreasing is to show that
the arguments of a function call are smaller than the corresponding input variables. For example,
in the following program, the first input to the function at line 3 strictly decreases with respect to
the input n.

1



1 f a c t (n) = 1 : f 1 (n , 1)
2 f1 (n , t ) = i f n=0 then t
3 e l s e 2 : f 1 (n−1, t ∗n)

Although this general methodology had been applied prior to the results of size-change termi-
nation [7], it was not robust for all cases including permuted arguments to recursive calls and
indirect/mutual recursion [11].

The methodology of size-change termination, proposed by Lee et al., attempts to generalize
this idea so it does require user provided annotations or theorem proving methods. This method
encapsulates the idea of descending input values in a size-change graph. While the original paper
on size-change termination provides methods for analyzing size-change graphs to prove program
termination, which will be detailed here, it does not provide methods for producing these graphs
in the first place.

Size-change termination analyzes a program in terms of its call sequence. We use the following
terms to describe call sequences in the program:

• f c−→ g can occur if a call to g occurs in the body of f

• A call sequence is an infinite or finite sequence c1c2c3 . . . which is well formed if there exists
some some sequence of functions f0, f1, f2, . . . such that f0

c1−→ f1
c2−→ fx

c3−→ . . ..

• We can also write a call sequence cs = c1c2c3 . . . as f0 → fn if f0
c1−→ f1

c2−→ . . .
cn−→ fn.

In this way, a program can be abstracted as a call sequence. With size-change analysis, this
information is encoded in a size-change graph.

A size-change graph, G : f → g, is a bipartite graph representing a state transition between
(f, v1) and (g, v2) as follows:

• Nodes in the graph come from the parameters of f and of g

• Edges in the graph are directed from parameters of f to parameters of g

• An edge can be labeled with ↓ if the data value strictly decreases in the call, wheras an edge
labeled with ⇓ must have the data value either decrease or stay the same.

A multipath is a graph representing a concatenation of size-change graphs. Below is an example
of a set of size-change graphs and a multipath for the factorial example given earlier:

n n

t

⇓

(a) G1 : fact → f1

n n

t t

↓

(b) G2 : f1 → f1

n n n . . .

t t t . . .

⇓ ↓ ↓

(c) G1||G2||G2|| . . .

Figure 1: Size-change graphs and multipath for fact

More formally, let C be the set of all possible calls in program p. Then, let G = {Gc|c ∈
C}. Then, given some call sequence cs, MG(cs) = Gc1 ||Gc2 ||Gc3 || . . ., where || represents the
concatenation of graphs.

In order to determine if a program is infinitely descending, we must first determine the set of
all infinite call sequences which represent the program. Given that the first function called by the
program is fi, we call this set FLOWω = {cs = c1c2 . . . | cs is well formed and fi

c1−→ f1}
The analysis then considers threads in a multipath representing a program p. A thread in

a multipath M is a path starting from any node in the graph - if it contains at least one edge
labeled ↓, it is considered a descending thread, and if it contains infinitely many edges labeled ↓ it
is considered an infinitely decreasing thread.

Let DESCω = {cs ∈ FLOWω|∃ some infinitely decreasing thread inMG(cs)}. Then, pro-
gram p is size-change terminating if and only if FLOWω = DESCω. In this case, any infinite
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call sequence in p would cause some value to infinitely decrease, which cannot happen due to the
well-founded relations defined on program values. Therefore, there must not exist any infinite call
sequences, so p terminates for all reachable paths.

Lee et al. propose two methods for proving equivalence of FLOWω and DESCω. Both of
these methods are shown to be PSPACE-complete - that is, they are intractable but solvable in
polynomial space.

The first method proposed is composing a Büchi automaton - a type of ω-automaton which is
a finite representation of infinite sequences. Given two sets of infinite sequences, S1 and S2, along
with two (potentially distinct) automata which accept each sequence in their corresponding set, is
decidable to determine if S1 = S2. It is relatively trivial to construct an automata which accepts
all sequences in FLOWω. Therefore, if an automata to accept sequences in DESCω is created, it
is decidable to check if FLOWω = DESCω.

The specific automata created is a Büchi automaton with state transitions corresponding to
some size change graph and states corresponding to edges of the form x ⇓ or x ↓. The automaton
is created in such a way that it accepts a call sequence cs if the multipathMG(cs) has an infinitely
descending thread. If this is the case, it enters a state of the form x ↓ infinitely many times, so
these states are designated as accepting.

1 a (m, n) = i f m=0 then n+1 e l s e
2 i f n=0 then 1 : a (m−1, 1)
3 e l s e 2 : a (m−1,
4 3 : a (m, n−1))

(a) Example terminating program

(b) Büchi Automaton

Figure 2: Example program and automaton from [11]

However, explicitly creating an automaton in this way can be costly and cumbersome. An
alternate method involves analyzing a subset of the transitive closure of the set of all size-change
graphs. The composition of G1 and G2 contains the edge x ↓−→ z if there is some edge x→ y in G1

and y → z in G2 where either x ↓−→ y or y ↓−→ z. It will contain the edge x ⇓−→ y if neither edge is
strictly decreasing.

This analysis considers only the idempotent elements of the transitive closure. Lee et al. show
that Program p is not size change terminating if there is an idempotent element with no edge of
the form x

↓−→ x. Conversely, p is size-change terminating if every idempotent G has an edge x ↓−→ x
[8]. Suppose there is some idempotent G′, that is Gcs = Gcs;Gcs where Gcs is a graph composition
representing some call sequence cs and G1;G2 is the composition of G1 and G2. Assuming p is
size-change terminating, the call sequence cs, cs, . . . contains some infinitely descending thread.
Because there are finitely many variables, some variable x must be visited finitely many times, so
there must be some thread of the form x

↓−→ x. Because Gcs is idempotent, Gcs;Gcs; . . . = Gcs, so
Gcs must also have the edge x ↓−→ x. The reverse direction is shown in [11, 8] but is not required
for an understanding of the justification.

2.2 Implications
Both methods proposed for providing size-change termination are decidable, which makes size-
change analysis seem tempting as a method for approximating the undecidable problem of size-
change termination. However, creating a size-change graph which actually represents the program
is itself undecidable. Methods for getting a size-change graph which adequately approximates the
program have been developed. One method, by Codish et al. [4], modifies the size-change graph
abstraction slightly such that the search for a "good enough" abstraction can be encoded as a SAT
problem.

However, while one issue is finding an appropriate approximation to the program’s size-change
graph, the performance bottleneck is the actual analysis. A polynomial time approximation for
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this step has been developed [2]. Because analyzing a specific size-change graph in the second
approach described can be done in polynomial time, the real issue is the exponential number of
graphs generated in the closure. However, by using heuristics based on the structure of the graph,
a finite number of graphs can be analyzed. In practice, this has been successfully applied to most
cases, with some user annotation required in certain cases.

A unique element of size-change analysis is the direct generation of a program abstraction in
the form of a size-change graph. Therefore, many other approaches create related abstractions
which allow the analysis to be performed in different programming contexts. Of note, recently
an approach to detect termination at runtime has been developed [13], shown to be equivalent to
static size-change analysis in many cases.

3 Transition Invariants

3.1 Methodology
Transition invariants extend the ideas of loop invariants to reason about the course of program
execution across its entire execution, rather than the state of the program at any given state. In
this sense, transition invariants may be the most natural way to reason about program termination
- and it is by no means a surprise that this was the basis behind Turing’s original approach to
proving program termination [12].

The idea behind Turing’s method is to find a termination argument f which, given some well-
founded relation <∈ A × A, maps a state σ to A. If the program transitions from state σ to σ′,
then the termination argument should satisfy f(s′) < f(s) - that is, the value of the termination
argument should decrease upon each iteration of the program.

If an appropriate termination argument is found, then this is sufficient to prove program ter-
mination. If the state of the program can be mapped to a continually decreasing value, then there
cannot be infinite execution of the program. This is because f(s) must eventually reach some
minimal value.

An example of the function f for a simple iterative program is given in Figure 3. Here, input
refers to a function which nondeterministically returns either 0 or 1 [6].

1 x := input ( ) ;
2 y := input ( ) ;
3 whi l e x > 0 and y > 0 do
4 i f input ( ) = 1 then
5 x := x − 1 ;
6 y := y + 1 ;
7 e l s e
8 y := y − 1
9 f i
10 done

f = 2x+ y will prove termination of the program

Figure 3: Program termination with a monolithic termination argument

More formally, a given program can be represented via the tuple < W, I,R > where

• W is the set of program states

• I is the set of initial states

• R is a transition relation, which is a binary relation in W ×W , which shows how states can
transition in the program.

A transition invariant T is a superset of the transitive closure of R, R+. This superset is specifically
restricted to states that are actually accessible in the program: T ⊇ R+ ∩ (Acc×Acc), where Acc
is the set of accessible states in the program [14]. If the transition invariant is well-founded (as
before), the program will terminate.

Therefore, this approach must find a relation which is
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1. Well-founded

2. Describes a transition between any possible path of accessible states.

Finding a single termination argument which serves as a transition invariant has been the subject
of research and successfully applied in a number of cases [16], however there are multiple challenges
involved with this approach. Depending on the specific output of the termination argument, it
may or may not be possible to actually find a termination invariant with this method. Even if it
is, the termination argument may have to be so long that it is in practice impossible to find one
that is actually a superset of R+ [6].

In order to solve these issues, Podelski and Rybalchenko proposed instead attempting to find
disjunctively well-founded termination relations. A disjunctively well-founded relation is the union
of well-founded relations: T = T1 ∪ T2 ∪ . . . ∪ Tn, where T1, . . . , Tn are all well-founded relations.

In practice, this looks like the disjunction of termination arguments found in the previous
example. For example, a disjunctively-well founded termination relation for the previous example
would be f = (x decreases by at least 1 ∧ x > 0) ∨ (y decreases by at least 1 ∧ x > 0). However, if
we only consider the behavior of this relation across one iteration, we can "prove" some programs
terminate which actually do not (See figure 4). This does not give us the desired property of
soundness, making the method useless unless other modifications are made.

1 x := input ( ) ;
2 y := input ( ) ;
3 whi l e x > 0 and y > 0 do
4 i f input ( ) = 1 then
5 x := x − 1 ;
6 y := y + 1 ;
7 e l s e
8 y := y − 1
9 x := x + 1
10 f i
11 done

Although either x or y will decrease from one iteration to another, the program does not
terminate. Consider the case where input() alternately outputs 0 and 1.

Figure 4: Nonterminating program

The issue is that the union of well-founded relations may not itself be well-founded. For
a monolithic termination argument (with no disjunction) to form a transition invariant, it was
sufficient to show R ⊆ T . However, for a disjunctively well-founded relation, we must show
R+ ⊆ T . In other words, we must show that f(s′) < f(s) not just for states s, s′ which occur in
consecutive iterations, but for any pair of states s, s′ for which s′ is reachable after one or more
iterations.

In practice, it is much easier to find a disjunctive termination argument f than a monolithic
termination argument, using techniques which will be described in the next section. However,
because we have to prove that R+ ⊆ T instead of just R ⊆ T , it is much more different to show
that a termination argument is valid. As will be discussed, many of the attempts to improve the
performance of methods using disjunctively well-founded arguments relate to this step of proving
validity.

3.2 Implications
Once a termination argument is found, it can be encoded as a loop assertion and then analyzed
using existing techniques for symbolic execution, abstract interpretation, and safety checking [6].
Consider for example, the method in Figure 5 for encoding the disjunctive invariant given in the
previous section.

In order to generate a termination argument in the first place, one method is to start with
an empty set of well-founded relations and iteratively generate candidates using rank function
synthesis, adding them to the argument until it is determined to be valid or a real (non-spurious)
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1 copied := 0
2 x := input ( ) ;
3 y := input ( ) ;
4 whi l e x > 0 and y > 0 do
5 i f cop ied := 1 then
6 a s s e r t ( ( oldx >= x + 1 and oldx > 0) or
7 ( oldy >= y + 1 and oldy > 0)
8 e l s i f input ( ) = 1 then
9 copied = 1
10 oldx := x ;
11 oldy := y
12 f i
13 . . .
14 done

Figure 5: Encoding of termination argument checking

counterexample is found. This, combined with abstraction refinement, form the basis for the
TERMINATOR algorithm [5], which has successfully been applied to systems code of over 30K
lines, and has been able to identify numerous true bugs.

The TERMINATOR algorithm provides an effective method for finding termination arguments
- however, the majority of its running time (>99%) is spent verifying the correctness of candidate
termination arguments due to the path explosion of safety-checking methods. Therefore, much of
the subsequent work in the field has been dedicated to speeding up this verification. One obvious
approach is to identify a subset of candidate termination arguments to check. One such method,
which relies on so-called compositional transition invariants, allows for a finite number of iterations
in the checking process with the loss of a slight amount of precision [10]. Other methods attempt
to abstract away portions of the program. Loop summarization attempts to replace nested loops
with an appropriate transition argument, and builds the overall invariant based on this [15]. Other
methods attempt to abstract away irrelevant information in the ranking functions generated so the
checking is as efficient as possible, such as Chawdhary et al. who abstract a program as a trace,
or a sequence of states [3].

4 Comparison and Conclusion
One major difference between these two approaches is that size-change termination is a stronger
property than just program termination. To prove program termination, it is sufficient to show
that all reachable paths terminate. However, size-change termination requires all possible paths
(not just those reachable from the start of the program) terminate [9].

Just because of this difference, however, it does not mean that the two approaches are com-
pletely orthogonal. In the paper on loop summarization by Tsitovich et al., it is noted that in
order to perform the analysis, variables must be "havoced" in order to find an argument, much like
the "memoryless" property of size-change termination. In fact, many abstractions that are used
to find transition invariants closely mirror specific classes of size-change graphs [9].

Ultimately, the reason to use one method over the other depends mostly on the domain. While
there is no actual restriction on what types of program each method can analyze, size-change
analysis is most natural for functional programs and transition invariants make the most sense for
imperative and logic programs. Size-change analysis also avoids the use of external safety checkers
or theorem solvers, avoiding the problems of path explosion and the reliance on external progress
that methods relating to transition invariants come across.

In either case, the majority of problems faced by both methods relate to modern language
features, such as runtime structures, concurrency, and untyped programs. Recent work has at-
tempted to address this - in particular, work in termination analysis for program bytecode has
seen significant development. One such method generates a constraint logic program for which
many techniques, using the methods described here, are available to prove termination [1].
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